Eco Friendly Technology Essay Writing

Recently, new innovations in the field of green technology have included highly efficient LED lights, which could be used to make countless other gadgets more environmentally friendly, as well as promising growth in lesser-known renewable energies like algae oil. A company called Agilyx is working on technology that could turn plastic trash into synthetic crude oil, and flexible thin-film solar modules are one step closer to making a wider range of solar energy applications possible.

By September 2011, some gadgets will get even greener thanks to new standards for Energy Star labels. The U.S. Environmental Protection Agency (EPA) will require televisions, cable boxes and satellite boxes to be 40 percent more efficient than conventional models in order to win the label.

Major companies like Dell and Google are taking notable steps forward with eco-friendly technology in projects ranging from plant-based packaging to vast wind farms.

Google has announced that it will invest $100 million in the Shepherd's Flat wind project in Oregon, which will supply an average of 235,000 homes once it's fully operational in 2012. The tech-driven company is particularly interested in the project because it will be the first to use direct-drive turbines supplied by GE.

But wind power isn't the only renewable energy Google has its eye on; the company announced in early April 2011 that it will invest $168 million in a utility-scale power plant in the California desert, and also bought a 49-percent stake in a photovoltaic farm in Germany. Such investments could help the tech giant power its own energy-hungry operations more sustainably. Google currently has a 1.6 megawatt solar installation of its own at its Mountain View, California headquarters.

Dell is bringing its latest eco-friendly technology closer to home – specifically, the homes of customers ordering the company's computers. Dell has announced a new sustainable packing strategy that will use mushrooms to create product cushioning for shipment. Grown rather than manufactured, the mushroom-based packaging is produced when agricultural waste products like cotton hulls are pressed into molds and then inoculated with mushroom spawn. Within five to ten days, the resulting packaging is ready to use. Mushroom-based packaging is biodegradable, making it a far greener option than commonly used styrofoam and polyethylene.

Eco-friendly technology innovations such as these will continue have a tremendous impact on the tech industry, especially when implemented by companies with a large influence on consumers.

Environmentally friendly product and respect for the environment today have become a way of life of many consumers. This trend is spreading very quickly and therefore causes a lot of anxiety on the part of producers, since it addresses the main aspects of the packaging industry: the material itself, its recycling, re-use, and transportation. In addition, since the consumer appreciates healthy products, successful can be only packages of safe materials, but at the same time those that can better and longer preserve the useful properties of the product and take into account its peculiarities.

The problems of ecological rationality are forcing companies to look for ways to reduce the amount of their packaging, create thinner and lighter solutions, get rid of secondary packaging where possible, and try to reduce or stop the emission of CO2 during production or recycling of packaging (Jedlicka, 2008; PWC, 2012). Moreover, there is a gradual shift of the packaging industry from polymers derived from petrochemicals (share of which in the packaging industry today is approaching 40%) to biopolymers – plastics made from renewable resources and to biodegradable photodisaggregating nanocomposites (Emblem & Emblem, 2012; Rhim & Ng, 2007; Perez‐Masia et al., 2013).
For example, the company Huhtamaki manufactures eco-friendly packaging, plastic made from corn which decomposes in the soil; Pepsi produced a 100% biopolymer bottle (Han, 2013). Technology of adding nanoparticles into the polymers improves the barrier properties of the materials, as well as their water resistance (Rhim & Ng, 2007). Today, there are already colored or transparent plastics on the market that disappear in a month, glass and metal suitable for instantaneous recycling or instantly corroding in the air not doing harm to nature (Perez‐Masia et al., 2013). Positioning of packaging as biodegradable now plays in favor of brand owners as a good marketing point (PWC, 2012; Simms & Trott, 2010; Mishra & Jain, 2012). In general, continuous introduction of new technologies aimed not only at improving the quality of packaging but also at expanding the range of use of biopolymers and their mass adoption in the commercial industry make it clear that nanomaterials market will successfully develop in the coming years together with the resolution of the issue of plastics recycling.

Indeed, waste disposal today is the number one question in the world. For instance, Americans throw away 2.5 million plastic bottles every hour (Nunnery, 2010). But the issue applies not only to disposal of packaging but the products themselves too. Costs associated with the throw-out of food amount huge sums: in the UK alone 8.3 million tons of not eaten expired or mistakenly identified as spoilt foods are discarded each year (Jedlicka, 2008). From this point of view, modern packaging faces an important challenge not only to protect the content but also to extend the durability of the product packaged.

Among the new packaging materials inspired by the needs and demands of consumers for safety, the most noteworthy are the smart films, QLF-film, controlling the migration of oxygen and carbon dioxide between the package and the ambient air for breathing products to prevent bacterial growth (Emblem & Emblem, 2012; Rhim & Ng, 2007; Zettlemoyer, 2008). In addition, while until very recently it was believed that there should be no interaction between the package and the contents or it should be minimal, active packaging technology today contradicts this rule.

In AP, the product, the package and the environment affect each other mutually due to the inclusion of substances performing the task of active protection of the packaged food, for example, from the impact and development of micro-organisms or occurrence of odours or tastes (e.g. oxygen scavengers, carbon dioxide scavengers, potassium permanganate, calcium oxide, etc.) (Emblem & Emblem, 2012; Perez‐Masia et al., 2013; Zettlemoyer, 2008). For instance, Odour and Taste Control technology developed and patented by Du Pont consists in including in the packaging material the molecular sieves based on aluminosilicate with pore diameter of at least 5.5nm, which connect a number of volatile compounds released during the aging process from food products (Han, 2013). Thus, new technologies have made possible the change or rather the expansion of the functions of the package from inactive, indifferent barrier to external influences to an active player in protecting the packaged product.

Furthermore, the function of packing is now stretched to include signaling consumers about the freshness of their food, as soon as a number of researches demonstrated that the information on the package about the product itself, its composition, hygienic standards, recommendations of various institutions and ministries, expiry date is becoming increasingly important for the consumer (PWC, 2012; Mishra & Jain, 2012; Jedlicka, 2008). For example, in the UK a special package has been developed with a screen showing the time left to the deadline of the sale (Han, 2013). Other examples are the invention of electro conductive packaging and smart polyethylene with a sensor of titanium oxide nanoparticles, which changes color in the presence of oxygen thus signaling to the consumer that the product has spoilt (Rhim & Ng, 2007; Perez‐Masia et al., 2013; Han, 2013).

Thus, food and industrial wastes associated with improper packaging of products is an important issue that involves the loss of resources (products plus production costs), loss of associated resources (water, fertilizer, production), and huge carbon emissions. Package sustainability issue is closely linked to the social development and way of life, however, extended and strictly controlled shelf life due to innovative green packaging is able to both reduce waste and increase product safety.

April 3, 2015 |Free Essay Sample Papers|Tags: Eco-friendly packaging

0 Replies to “Eco Friendly Technology Essay Writing”

Lascia un Commento

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *